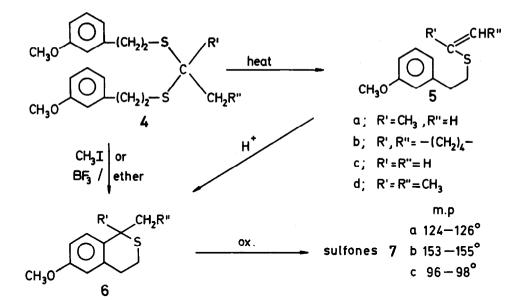

Detrahedron Letters Ho. 44, pp 4315 - 4316, 1973. Pergamon Press. Printed in Great Britain.

THE FACILE CYCLIZATION OF THIOACETALS AND VINYL SULFIDES WITH BUILT-IN NUCLEOPHILIC CENTRE VIA ALKYLTHIO CARBONIUM INTERMEDIATES¹

E.R. de Waard², H.R. Reus and H.O. Huisman, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

(Received in UK 10 August 1973; accepted for publication 21 September 1973)

As part of a general program we became interested in the use of alkylthio stabilized carbonium ions <u>3</u> with built-in nucleophilic centre for the synthesis of substituted thiacycloalkanes and alkylthio cycloalkanes.



The pyrolysis of the readily accessible thioacetals $\underline{1}$ to the corresponding vinyl thioethers $\underline{2}$ is known since long³. Some of the factors governing this conversion have been studied by Campaigne and co-workers⁴.

We have found that both $\underline{1}$ and $\underline{2}$ can serve as precursors for the synthesis of a wide variety of cyclic compounds and we wish to report our preliminary results on the cyclization of the thioacetals $\underline{4}a-d$, derived from $2-(\underline{m}-methoxyphenyl)$ ethanethiol⁵ and acetone, cyclohexanone, acetaldehyde or methyl ethylketone, respectively⁶.

The pyrolysis of the thioacetals $\underline{4}a$ and b to the vinyl sulfides $\underline{5}a$ and b, respectively, proceeds smoothly on a single passage through any GLC column at 200-250°, and can easily be automatized to a preparative scale. The eliminated thiol is collected as the first fraction on all columns used by us. Pyrolysis of compound $\underline{4}c$ led to a reaction mixture consisting of components of which we have not been able to establish the structures thus far. Thioacetal $\underline{4}d$ gave rise to a mixture of the three possible isomeric vinyl sulfides in a ratio of terminal to non-terminal olefines of 14 : 86. The two non-terminal isomers were present in roughly equal quantities⁷.

When the vinyl sulfide 5a, 5b or the isomer mixture 5d is stirred with HClO₄ (70%) at r.t. for 2-3 hr, the cyclized products 6a, b and d, respectively, are isolated in a quantitative yield on dilution with water, neutralization and extraction with organic solvents.

The conversion from $\underline{4}$ a-d to $\underline{6}$ a-d is effected by stirring a benzene solution of $\underline{4}$ at r.t. with 1.2-2 eq. of CH₃I (BF₃/ether was used for $\underline{4}$ c) and is complete after reaction times varying from 3-20 days.

The compounds $\underline{6}$ a-d have been characterized by oxidation to the corresponding sulfones 7 a-d.

All new compounds gave a satisfactory combustion analysis and their structures were in accordance with spectral data. Further applications of the cyclization reaction will be reported in due course.

Footnotes and references:

- 1. Taken in part from: H.R. Reus, forthcoming Thesis, Amsterdam.
- 2. To whom all correspondence should be addressed.
- 3. A. Sporzyńsky, Arch.Chem.Farm. <u>3</u>, 59 (1936); CA <u>32</u>, 8359 (1938), L.B. Turner, CA <u>31</u>, 1038 (1937).
- 4. E. Campaigne and J.R. Leal, J.Amer.Chem.Soc. 76, 1272 (1954).
- Prepared as described by G.G. Urguhart, e.a., Org.Synth. <u>21</u>, 36 (1946) for the synthesis of <u>n</u>-C₁₂H₂₅SH.
- 6. Prepared following the procedure described by E. Baumann, Ber. 18, 883 (1885)
- Partial overlap of the NMR signals prevented the establishment of the <u>cis</u>/ <u>trans</u> ratio with sufficient accuracy.